Add and Subtract Integers

Getting the Idea

The absolute value of a number is its distance from 0 . For example, the absolute value of 2 , written |2|, is 2 because it is 2 units to the right of 0 on the number line. Likewise, $|-2|$ is also 2 since -2 is 2 units to the left of 0 on a number line.

You can use a number line to add integers. Start at the point that represents the first integer. To add a positive integer, move to the right. To add a negative integer, move to the left.

Recall that the additive inverse of a number is its opposite. For example, the additive inverse of 5 is -5 .

Example 1

Find the sum of 3 and its additive inverse.

Strategy Use a number line.

Step 1 Write an addition expression for the sum.
The additive inverse of 3 is -3 .
Find $3+(-3)$.
Step 2 Use a number line to add.
Start at 3 . Since you are adding a negative integer, move 3 units to the left.

The sum is 0 .
Solution The sum of 3 and its additive inverse is 0 .
$3+(-3)=0$ is an example of the existence of the additive inverse property. It states that the sum of a number and its additive inverse is 0 .

In Example 1, notice that the sum of $3+(-3)$ is at 0 , located a distance of 3 units to the left of 3 . So, $(-3)+3$ will also have the sum of 0 because it is located 3 units to the right of -3 .

Let a and b represent two integers. To find the sum of $a+b$ on a number line, start at a and move a distance of $|b|$. Move to the right of a if b is positive and to the left of a if b is negative. The sign of the sum depends upon the direction and the number of units moved from a.

Example 2

Find the sum.

$$
-4+3=\square
$$

Strategy Use a number line to add the two integers.

Start at -4 .
Since you are adding a positive integer, move 3 units to the right.

The sum is -1 .
Solution $\quad-4+3=-1$

You can use the following rules to add integers.

Rules for Adding Two Integers

- When integers have the same sign, add the absolute values and use the sign of the addends in the sum.
- When integers have different signs, find the difference of their absolute values. Then use the sign of the addend with the greater absolute value in the sum.

Example 3

Add.
$-11+(-8)=\square$
Strategy Apply the rules for adding two integers.
Step 1 The integers have the same sign, so add the absolute values.

$$
\begin{aligned}
|-11| & =11 \\
|-8| & =8 \\
11+8 & =19
\end{aligned}
$$

Step 2 Use the sign of the addends.
The sign of both addends is negative, so the sum is -19 .
Solution $\quad-11+(-8)=-19$

You can also use the properties of addition to add integers.

Example 4

Add.

$$
24+(-10)=\square
$$

Strategy Use the properties of addition.

Step 1 Rewrite 24 as a sum with an addend of 10.

$$
24=(14+10)
$$

Step 2 Rewrite the problem using the new form of 24.

$$
24+(-10)=(14+10)+(-10)
$$

Step 3 Use the associative property of addition.

$$
\begin{aligned}
(14+10)+(-10) & =14+(10+(-10)) \\
& =14+0 \quad \longleftarrow \text { The sum of a number and its } \\
& =14 \quad \text { additive inverse is } 0 .
\end{aligned}
$$

Solution $24+(-10)=14$
A number line can also be used to subtract integers. To subtract a positive integer, move to the left. To subtract a negative integer, move to the right.

Example 5

Find the difference.

$$
3-7=\square
$$

Strategy Use a number line to subtract two integers.

Start at 3.

Since you are subtracting a positive integer, move 7 units to the left.

The difference is -4 .
Solution $\quad 3-7=-4$

Subtracting an integer is the same as adding its additive inverse.
Use these rules to subtract integers.

Rules for Subtracting Two Integers

- Write the additive inverse (opposite) of the number to be subtracted (the subtrahend).
- Change the minus sign to a plus sign.
- Apply the rules for adding two integers.

Example 6

Subtract.

$$
-5-4=\square
$$

Strategy Add the opposite of the subtrahend.

Step 1 Find the opposite of the number to be subtracted.
The subtrahend is 4 .
The opposite of 4 is -4 .
Step 2 Add the opposite of the subtrahend to the minuend.

$$
-5-4=-5+(-4)
$$

Both integers being added have a negative sign.
Step 3 Add the absolute values of the integers.

$$
\begin{aligned}
& |-5|=5 \text { and }|-4|=4 \\
& 5+4=9
\end{aligned}
$$

Step 4 Give the sum the same sign as the addends, a negative sign.
Solution $\quad-5-4=-9$

Example 7

Subtract.
$2-(-8)=\square$

Strategy Add the opposite of the subtrahend.

Step 1 Find the opposite of the number to be subtracted.
The subtrahend is -8 .
The opposite of -8 is 8 .
Step 2 Add the opposite of the subtrahend to the minuend.
$2-(-8)=2+8$
Both integers being added are positive.
Step 3 Add the integers.
$2+8=10$
Since both integers are positive, the sum will also be positive.
Solution $2-(-8)=10$

The properties of addition and subtraction can be used to show that $a-(b+c)=a-b-c$ if a, b, and c are integers.

$$
\begin{aligned}
a-(b+c) & =a+-(b+c) & & \text { Add the opposite. } \\
& =a+(-b)+(-c) & & \text { Rewrite the sum using the distributive property. } \\
& =a-b-c & & \text { Use the properties of subtraction. }
\end{aligned}
$$

You can use the rules for adding and subtracting integers to solve problems.

Example 8

Carly has $\$ 50$ in a bank account. She writes a check for $\$ 60$ from the account. How much money does Carly have in her account after writing the check?

Strategy Write a number sentence for the problem. Then solve.

Step 1 Write a number sentence for the problem.
Let m represent the amount Carly has in her account after writing the check.

$$
\$ 50-\$ 60=m
$$

Step 2 Add the opposite of the number to be subtracted.

$$
\$ 50-\$ 60=\$ 50+(-\$ 60)
$$

The integers being added have different signs.
Step 3 Find the difference of the absolute values of the integers.

$$
\begin{aligned}
& |50|=50 \\
& |-60|=60 \\
& 60-50=10
\end{aligned}
$$

Step 4 Use the sign of the addend with the greater absolute value.
$|-60|>|50|$, so the sum is negative.
$\$ 50+(-\$ 60)=-\$ 10$
Solution Carly has $\mathbf{- \$ 1 0}$ in her account after writing the check.

Coached Example

The record low temperature for Albany, New York, was -28º in January 1971. The lowest temperature in U.S. history is $52^{\circ} \mathrm{F}$ lower than Albany's record low temperature. What is the lowest temperature in U.S. history?

Let / represent the lowest temperature in U.S. history.
Write a number sentence to represent the problem. \qquad
Is the subtrahend positive or negative? \qquad
Find the opposite of the subtrahend. \qquad
Add the opposite of the subtrahend to the minuend. \qquad
Both integers being added have a \qquad sign.

Apply the rules for adding two integers.
Find the absolute value of the first addend. \qquad
Find the absolute value of the second addend. \qquad
Add the absolute values. \qquad
Use the sign of the addends in the sum. The sign for the sum is \qquad .

The lowest temperature in U.S. history is \qquad ${ }^{\circ} \mathrm{F}$.

Lesson Practice

Choose the correct answer.

1. Subtract.

$$
3-(-6)=\square
$$

A. -9
B. -3
C. 3
D. 9
2. Add.

$$
9+(-16)=\square
$$

A. 25
B. 7
C. -7
D. -25
3. Subtract.

$$
-10-4=\square
$$

A. -14
B. -6
C. 6
D. 14
4. The temperature one morning in Shasta was $-12^{\circ} \mathrm{F}$. By the afternoon, the temperature had risen $8^{\circ} \mathrm{F}$. What was the temperature in the afternoon?
A. $20^{\circ} \mathrm{F}$
B. $4^{\circ} \mathrm{F}$
C. $-4^{\circ} \mathrm{F}$
D. $-20^{\circ} \mathrm{F}$
5. Find the sum.

$$
-4+(-2)=\square
$$

A. -6
B. -2
C. 2
D. 6
6. Find the difference.

$$
6-11=\square
$$

A. -17
B. -5
C. 5
D. 17
7. A submarine at -28 feet dives 40 feet. What is the submarine's elevation after the dive?
A. 68 feet
B. 12 feet
C. -12 feet
D. -68 feet
8. The Panthers lost 6 yards on their first play and lost another 8 yards on their next play. What was their net result in yards after these two plays?
A. -14 yards
B. -2 yards
C. 2 yards
D. 14 yards
9. The temperature at the base of a mountain was $14^{\circ} \mathrm{F}$. The temperature at the summit was $16^{\circ} \mathrm{F}$ lower than at the base.
A. Write a subtraction expression to represent the temperature at the summit.
B. What was the temperature at the summit? Show your work.
\qquad
\qquad
\qquad
10. Which word problem has the solution of -4 ? Circle all that apply.
A. Earl jogged 5 yards forward and then jogged 9 yards backward. What was his final position compared to his starting point?
B. A rainbow trout was swimming at -2 feet. It swam downward 4 more feet. What was the new depth of the trout?
C. Clarissa had $\$ 49$ in her checking account. She spent $\$ 53$ on a pair of shoes. What was the new balance of her account?
11. Simplify each expression. Write each expression in the correct box.

$4-(-2)$

-10	6	-2

12. A scuba diver is at -4 feet. He dives down 7 more feet to a coral reef. Circle the elevation of the top of the coral reef.

The elevation of the top of the coral reef is

11
3
-3
-11

13. Select True or False for each equation.
A. $4-(-6)=10$
\bigcirc TrueFalse
B. $5+(-11)=-6$
\bigcirc TrueFalse
C. $-7+(-3)=10$True \bigcirc
False
D. $2-9=-7$TrueFalse
14. Use numbers from the box to complete each equation.

$-21+34=$
$+(-8)=26$
$17-(-38)=\square$
$64-\square$
$-5-(-18)=$

15. Draw a line from each expression to its equivalent value.
A. $-3+(-5)$

- 8
B. $14-6$
- -8
C. $-5-8$
- 13
D. $4-(-9)$ -
- -13

16. The temperature at noon was $72^{\circ} \mathrm{F}$. The temperature dropped $16^{\circ} \mathrm{F}$ by 9:00 P.m. Circle the temperature at 9:00 Р.м.

The temperature at 9:00 P.M. was

